Lyapunov-type least-squares problems over symmetric cones

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extension of Sums of Squares Relaxations to Polynomial Optimization Problems Over Symmetric Cones

This paper is based on a recent work by Kojima which extended sums of squares relaxations of polynomial optimization problems to polynomial semidefinite programs. Let E and E+ be a finite dimensional real vector space and a symmetric cone embedded in E ; examples of E and E+ include a pair of the N -dimensional Euclidean space and its nonnegative orthant, a pair of the N -dimensional Euclidean ...

متن کامل

Dykstra's algorithm for constrained least-squares doubly symmetric matrix problems

In this work we apply Dykstra’s alternating projection algorithm for minimizing ‖AX − B‖ where ‖ · ‖ is the Frobenius norm and A ∈ Rm×n, B ∈ Rm×n and X ∈ Rn×n are doubly symmetric positive definite matrices with entries within prescribed intervals. We first solve the constrained least-squares matrix problem by using the special structure properties of doubly symmetric matrices, and then use the...

متن کامل

A Continuation Method for Nonlinear Complementarity Problems over Symmetric Cones

In this paper, we introduce a new P -type condition for nonlinear functions defined over Euclidean Jordan algebras, and study a continuation method for nonlinear complementarity problems over symmetric cones. This new P -type condition represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically.

متن کامل

Uniform nonsingularity and complementarity problems over symmetric cones

Abstract. We study the uniform nonsingularity property recently proposed by the authors and present its applications to nonlinear complementarity problems over a symmetric cone. In particular, by addressing theoretical issues such as the existence of Newton directions, the boundedness of iterates and the nonsingularity of B-subdifferentials, we show that the non-interior continuation method pro...

متن کامل

Linear Least Squares Problems

A fundamental task in scientific computing is to estimate parameters in a mathematical model from collected data which are subject to errors. The influence of the errors can be reduced by using a greater number of data than the number of unknowns. If the model is linear, the resulting problem is then to “solve” an in general inconsistent linear system Ax = b, where A ∈ Rm×n and m ≥ n. In other ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2012

ISSN: 0024-3795

DOI: 10.1016/j.laa.2012.06.020